CSpace
On the spectrum determined growth assumption and the perturbation of C-0 semigroups
Xu, GQ; Feng, DX
2001-03-01
发表期刊INTEGRAL EQUATIONS AND OPERATOR THEORY
ISSN0378-620X
卷号39期号:3页码:363-376
摘要The spectrum determined growth property of C-0 semigroups in a Banach space is studied. It is shown that if A generates a C-0 semigroup in a Banach space X, which satisfies the following conditions: 1) for any sigma > s(A), sup{\\R(lambda; A)\\ / Re lambda greater than or equal to sigma} < ; 2) there is a sigma (0) > omega (A) such that integral (+infinity)(-infinity+) \\R(sigma (0) + i tau; A)x\\(2)d tau < , For Allx is an element of X, and integral (+infinity)(-infinity) \\R(sigma (0) + i tau; A*)f\\2d tau < , For Allf is an element of X*, then omega (A) = s(A). Moreover, it is also shown that if A = A(0) + B is the infinitesimal generator of a C-0 semigroup in Hilbert space, where A(0) is a discrete operator and B is bounded, then omega (A) = s(A). Finally the results obtained are applied to wave equation and thermoelastic system.
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000167993300008
出版者BIRKHAUSER VERLAG AG
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/16359
专题中国科学院数学与系统科学研究院
通讯作者Xu, GQ
作者单位Chinese Acad Sci, Acad Math & Syst Control, Inst Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Xu, GQ,Feng, DX. On the spectrum determined growth assumption and the perturbation of C-0 semigroups[J]. INTEGRAL EQUATIONS AND OPERATOR THEORY,2001,39(3):363-376.
APA Xu, GQ,&Feng, DX.(2001).On the spectrum determined growth assumption and the perturbation of C-0 semigroups.INTEGRAL EQUATIONS AND OPERATOR THEORY,39(3),363-376.
MLA Xu, GQ,et al."On the spectrum determined growth assumption and the perturbation of C-0 semigroups".INTEGRAL EQUATIONS AND OPERATOR THEORY 39.3(2001):363-376.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, GQ]的文章
[Feng, DX]的文章
百度学术
百度学术中相似的文章
[Xu, GQ]的文章
[Feng, DX]的文章
必应学术
必应学术中相似的文章
[Xu, GQ]的文章
[Feng, DX]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。