CSpace
Convergence rates to discrete shocks for nonconvex conservation laws
Liu, HL; Wang, JH; Warnecke, G
2001-05-01
发表期刊NUMERISCHE MATHEMATIK
ISSN0029-599X
卷号88期号:3页码:513-541
摘要This paper is concerned with polynomial decay rates of perturbations to stationary discrete shocks for the Lax-Friedrichs scheme approximating non-convex scalar conservation laws, We assume that the discrete initial data tend to constant states as j --> +/- infinity, respectively, and that the Riemann problem for the corresponding hyperbolic equation admits a stationary shock wave. If the summation of the initial perturbation over (- infinity , j) is small and decays with an algebraic rate as /j/ --> infinity, then the perturbations to discrete shocks are shown to decay with the corresponding rate as n --> infinity. The proof is given by applying weighted energy estimates. A discrete weight function, which depends on the space-time variables for the decay rate and the state of the discrete shocks in order to treat the non-convexity, plays a crucial role.
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000169026300005
出版者SPRINGER-VERLAG
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/16280
专题中国科学院数学与系统科学研究院
通讯作者Liu, HL
作者单位1.Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
2.Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China
3.Univ Magdeburg, IAN, D-39016 Magdeburg, Germany
推荐引用方式
GB/T 7714
Liu, HL,Wang, JH,Warnecke, G. Convergence rates to discrete shocks for nonconvex conservation laws[J]. NUMERISCHE MATHEMATIK,2001,88(3):513-541.
APA Liu, HL,Wang, JH,&Warnecke, G.(2001).Convergence rates to discrete shocks for nonconvex conservation laws.NUMERISCHE MATHEMATIK,88(3),513-541.
MLA Liu, HL,et al."Convergence rates to discrete shocks for nonconvex conservation laws".NUMERISCHE MATHEMATIK 88.3(2001):513-541.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, HL]的文章
[Wang, JH]的文章
[Warnecke, G]的文章
百度学术
百度学术中相似的文章
[Liu, HL]的文章
[Wang, JH]的文章
[Warnecke, G]的文章
必应学术
必应学术中相似的文章
[Liu, HL]的文章
[Wang, JH]的文章
[Warnecke, G]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。