KMS Of Academy of mathematics and systems sciences, CAS
Convergence rates to discrete shocks for nonconvex conservation laws | |
Liu, HL; Wang, JH; Warnecke, G | |
2001-05-01 | |
发表期刊 | NUMERISCHE MATHEMATIK
![]() |
ISSN | 0029-599X |
卷号 | 88期号:3页码:513-541 |
摘要 | This paper is concerned with polynomial decay rates of perturbations to stationary discrete shocks for the Lax-Friedrichs scheme approximating non-convex scalar conservation laws, We assume that the discrete initial data tend to constant states as j --> +/- infinity, respectively, and that the Riemann problem for the corresponding hyperbolic equation admits a stationary shock wave. If the summation of the initial perturbation over (- infinity , j) is small and decays with an algebraic rate as /j/ --> infinity, then the perturbations to discrete shocks are shown to decay with the corresponding rate as n --> infinity. The proof is given by applying weighted energy estimates. A discrete weight function, which depends on the space-time variables for the decay rate and the state of the discrete shocks in order to treat the non-convexity, plays a crucial role. |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000169026300005 |
出版者 | SPRINGER-VERLAG |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/16280 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Liu, HL |
作者单位 | 1.Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA 2.Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China 3.Univ Magdeburg, IAN, D-39016 Magdeburg, Germany |
推荐引用方式 GB/T 7714 | Liu, HL,Wang, JH,Warnecke, G. Convergence rates to discrete shocks for nonconvex conservation laws[J]. NUMERISCHE MATHEMATIK,2001,88(3):513-541. |
APA | Liu, HL,Wang, JH,&Warnecke, G.(2001).Convergence rates to discrete shocks for nonconvex conservation laws.NUMERISCHE MATHEMATIK,88(3),513-541. |
MLA | Liu, HL,et al."Convergence rates to discrete shocks for nonconvex conservation laws".NUMERISCHE MATHEMATIK 88.3(2001):513-541. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论