KMS Of Academy of mathematics and systems sciences, CAS
On the decay properties of solutions to the non-stationary Navier-Stokes equations in R-3 | |
He, C; Xin, ZP | |
2001 | |
发表期刊 | PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS
![]() |
ISSN | 0308-2105 |
卷号 | 131页码:597-619 |
摘要 | In this paper, we study the asymptotic decay properties in both spatial and temporal variables for a class of weak and strong solutions, by constructing the weak and strong solutions in corresponding weighted spaces. It is shown that, for the strong solution, the rate of temporal decay depends on the rate of spatial decay of the initial data. Such rates of decay are optimal. |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
WOS记录号 | WOS:000169500300005 |
出版者 | CAMBRIDGE UNIV PRESS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/16244 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | He, C |
作者单位 | 1.Acad Sinica, Inst Appl Math, Beijing 100080, Peoples R China 2.Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China 3.NYU, Courant Inst, New York, NY 10012 USA 4.Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 | He, C,Xin, ZP. On the decay properties of solutions to the non-stationary Navier-Stokes equations in R-3[J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS,2001,131:597-619. |
APA | He, C,&Xin, ZP.(2001).On the decay properties of solutions to the non-stationary Navier-Stokes equations in R-3.PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS,131,597-619. |
MLA | He, C,et al."On the decay properties of solutions to the non-stationary Navier-Stokes equations in R-3".PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS 131(2001):597-619. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[He, C]的文章 |
[Xin, ZP]的文章 |
百度学术 |
百度学术中相似的文章 |
[He, C]的文章 |
[Xin, ZP]的文章 |
必应学术 |
必应学术中相似的文章 |
[He, C]的文章 |
[Xin, ZP]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论