KMS Of Academy of mathematics and systems sciences, CAS
| Residual type a posteriori error estimates for elliptic obstacle problems | |
| Chen, ZM; Nochetto, RH | |
| 2000-02-01 | |
| 发表期刊 | NUMERISCHE MATHEMATIK
![]() |
| ISSN | 0029-599X |
| 卷号 | 84期号:4页码:527-548 |
| 摘要 | A posteriori error estimators of residual type are derived for piecewise linear finite element approximations to elliptic obstacle problems. An instrumental ingredient is a new interpolation operator which requires minimal regularity, exhibits optimal approximation properties and preserves positivity. Both upper and lower bounds are proved and their optimality is explored with several examples. Sharp a priori bounds for the a posteriori estimators are given, and extensions of the results to double obstacle problems are briefly discussed. |
| 语种 | 英语 |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics, Applied |
| WOS记录号 | WOS:000085704700001 |
| 出版者 | SPRINGER VERLAG |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/15791 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Nochetto, RH |
| 作者单位 | 1.Univ Maryland, Dept Math, College Pk, MD 20742 USA 2.Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA 3.Acad Sinica, Inst Math, Beijing 100080, Peoples R China |
| 推荐引用方式 GB/T 7714 | Chen, ZM,Nochetto, RH. Residual type a posteriori error estimates for elliptic obstacle problems[J]. NUMERISCHE MATHEMATIK,2000,84(4):527-548. |
| APA | Chen, ZM,&Nochetto, RH.(2000).Residual type a posteriori error estimates for elliptic obstacle problems.NUMERISCHE MATHEMATIK,84(4),527-548. |
| MLA | Chen, ZM,et al."Residual type a posteriori error estimates for elliptic obstacle problems".NUMERISCHE MATHEMATIK 84.4(2000):527-548. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Chen, ZM]的文章 |
| [Nochetto, RH]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Chen, ZM]的文章 |
| [Nochetto, RH]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Chen, ZM]的文章 |
| [Nochetto, RH]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论