KMS Of Academy of mathematics and systems sciences, CAS
| Characteristic conditions of the generation of C-0 semigroups in a Hilbert space | |
| Shi, DH; Feng, DX | |
| 2000-07-15 | |
| 发表期刊 | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
![]() |
| ISSN | 0022-247X |
| 卷号 | 247期号:2页码:356-376 |
| 摘要 | In this paper new characteristic conditions, in terms of A and the first order resolvent of A and A*, which assure that A generates a C-0 semigroup in a Hilbert space are proposed and proved. The conditions can be used to investigate the well-posedness problem of non-dissipative systems. An example is also given to show how to use them. (C) 2000 Academic Press. |
| 关键词 | C-0 semigroups generation conditions Hilbert space non-dissipative systems |
| 语种 | 英语 |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics, Applied ; Mathematics |
| WOS记录号 | WOS:000088123600002 |
| 出版者 | ACADEMIC PRESS INC |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/15527 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Shi, DH |
| 作者单位 | 1.Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China |
| 推荐引用方式 GB/T 7714 | Shi, DH,Feng, DX. Characteristic conditions of the generation of C-0 semigroups in a Hilbert space[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,2000,247(2):356-376. |
| APA | Shi, DH,&Feng, DX.(2000).Characteristic conditions of the generation of C-0 semigroups in a Hilbert space.JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,247(2),356-376. |
| MLA | Shi, DH,et al."Characteristic conditions of the generation of C-0 semigroups in a Hilbert space".JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 247.2(2000):356-376. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Shi, DH]的文章 |
| [Feng, DX]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Shi, DH]的文章 |
| [Feng, DX]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Shi, DH]的文章 |
| [Feng, DX]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论