CSpace
Hermitian-Einstein metrics and Chern number inequalities on parabolic stable bundles over Kahler manifolds
Li, JY
2000-07-01
发表期刊COMMUNICATIONS IN ANALYSIS AND GEOMETRY
ISSN1019-8385
卷号8期号:3页码:445-475
摘要Let (X) over bar be a compact complex manifold with a smooth Kahler metric and D = Sigma(i=1)(m) D-i a divisor in (X) over bar with normal crossings. Let E be a holomorphic vector bundle over (X) over bar with a stable parabolic structure along D. We prove that there exists a Hermitian-Einstein metric on E' = E \(<(X)over bar\D) and obtain a Chern number inequality for a stable parabolic bundle. Without the assumption that the irreducible components D-i of D meet transversely, using Hironaka's theorem on the resolution of singularities, we also get a Chern number inequality for a more general stable parabolic bundle.
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000088907900001
出版者INT PRESS CO LTD
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/15268
专题中国科学院数学与系统科学研究院
通讯作者Li, JY
作者单位Acad Sinica, Inst Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Li, JY. Hermitian-Einstein metrics and Chern number inequalities on parabolic stable bundles over Kahler manifolds[J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY,2000,8(3):445-475.
APA Li, JY.(2000).Hermitian-Einstein metrics and Chern number inequalities on parabolic stable bundles over Kahler manifolds.COMMUNICATIONS IN ANALYSIS AND GEOMETRY,8(3),445-475.
MLA Li, JY."Hermitian-Einstein metrics and Chern number inequalities on parabolic stable bundles over Kahler manifolds".COMMUNICATIONS IN ANALYSIS AND GEOMETRY 8.3(2000):445-475.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, JY]的文章
百度学术
百度学术中相似的文章
[Li, JY]的文章
必应学术
必应学术中相似的文章
[Li, JY]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。