CSpace
On quadratic convergence of the O(root nL)-iteration homogeneous and self-dual linear programming algorithm
Wu, F; Wu, SQ; Ye, YY
1999
发表期刊ANNALS OF OPERATIONS RESEARCH
ISSN0254-5330
卷号87页码:393-406
摘要In this paper, we show that Ye-Todd-Mizuno's O(root nL)-iteration homogeneous and self-dual linear programming (LP) algorithm possesses quadratic convergence of the duality gap to zero. In the case of infeasibility, this shows that a homogenizing variable quadratically converges to zero (which proves that at least one of the primal and dual LP problems is infeasible) and implies that the iterates of the (original) LP variable quadratically diverge. Thus, we have established a complete asymptotic convergence result for interior-point algorithms without any assumption on the LP problem.
关键词linear programming interior-point algorithms homogeneity self-dual quadratic convergence
语种英语
WOS研究方向Operations Research & Management Science
WOS类目Operations Research & Management Science
WOS记录号WOS:000080349200027
出版者BALTZER SCI PUBL BV
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/14631
专题中国科学院数学与系统科学研究院
通讯作者Wu, F
作者单位1.Acad Sinica, Inst Appl Math, Beijing 100080, Peoples R China
2.Univ Iowa, Dept Management Sci, Iowa City, IA 52242 USA
推荐引用方式
GB/T 7714
Wu, F,Wu, SQ,Ye, YY. On quadratic convergence of the O(root nL)-iteration homogeneous and self-dual linear programming algorithm[J]. ANNALS OF OPERATIONS RESEARCH,1999,87:393-406.
APA Wu, F,Wu, SQ,&Ye, YY.(1999).On quadratic convergence of the O(root nL)-iteration homogeneous and self-dual linear programming algorithm.ANNALS OF OPERATIONS RESEARCH,87,393-406.
MLA Wu, F,et al."On quadratic convergence of the O(root nL)-iteration homogeneous and self-dual linear programming algorithm".ANNALS OF OPERATIONS RESEARCH 87(1999):393-406.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, F]的文章
[Wu, SQ]的文章
[Ye, YY]的文章
百度学术
百度学术中相似的文章
[Wu, F]的文章
[Wu, SQ]的文章
[Ye, YY]的文章
必应学术
必应学术中相似的文章
[Wu, F]的文章
[Wu, SQ]的文章
[Ye, YY]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。