CSpace
Long-time stability of finite element approximations for parabolic equations with memory
Allegretto, W; Lin, YP; Zhou, AH
1999-05-01
发表期刊NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
ISSN0749-159X
卷号15期号:3页码:333-354
摘要In this article, we derive the sharp long-time stability and error estimates of finite element approximations for parabolic integro-differential equations. First, the exponential decay of the solution as t --> infinity is studied, and then the semidiscrete and fully discrete approximations are considered using the Ritz-Volterra projection. Other related problems are studied as well. The main feature of our analysis is that the results are valid for both smooth and nonsmooth (weakly singular) kernels. (C) 1999 John Wiley & Sons, Inc.
关键词parabolic integro-differential long-time error estimates finite element stability
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000079902100005
出版者JOHN WILEY & SONS INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/14406
专题中国科学院数学与系统科学研究院
通讯作者Allegretto, W
作者单位1.Univ Alberta, Dept Math, Edmonton, AB T6G 2G1, Canada
2.Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Allegretto, W,Lin, YP,Zhou, AH. Long-time stability of finite element approximations for parabolic equations with memory[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,1999,15(3):333-354.
APA Allegretto, W,Lin, YP,&Zhou, AH.(1999).Long-time stability of finite element approximations for parabolic equations with memory.NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,15(3),333-354.
MLA Allegretto, W,et al."Long-time stability of finite element approximations for parabolic equations with memory".NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 15.3(1999):333-354.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Allegretto, W]的文章
[Lin, YP]的文章
[Zhou, AH]的文章
百度学术
百度学术中相似的文章
[Allegretto, W]的文章
[Lin, YP]的文章
[Zhou, AH]的文章
必应学术
必应学术中相似的文章
[Allegretto, W]的文章
[Lin, YP]的文章
[Zhou, AH]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。