KMS Of Academy of mathematics and systems sciences, CAS
Multi-step prediction for nonlinear autoregressive models based on empirical distributions | |
Guo, MH; Bai, ZD; An, HZ | |
1999-04-01 | |
发表期刊 | STATISTICA SINICA
![]() |
ISSN | 1017-0405 |
卷号 | 9期号:2页码:559-570 |
摘要 | A multi-step prediction procedure for nonlinear autoregressive (NLAR) models based on empirical distributions is proposed. Calculations involved in this prediction scheme are rather simple. It is shown that the proposed predictors are asymptotically equivalent to the exact least squares multi-step predictors, which are computable only when the innovation distribution has a simple known form. Simulation studies are conducted for two- and three-step predictors of two NLAR models. |
关键词 | empirical distribution multi-step prediction nonlinear autoregressive model |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Statistics & Probability |
WOS记录号 | WOS:000080200200013 |
出版者 | STATISTICA SINICA |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/14241 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Guo, MH |
作者单位 | 1.Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan 2.Natl Univ Singapore, Dept Math, Singapore, Singapore 3.Acad Sinica, Inst Appl Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Guo, MH,Bai, ZD,An, HZ. Multi-step prediction for nonlinear autoregressive models based on empirical distributions[J]. STATISTICA SINICA,1999,9(2):559-570. |
APA | Guo, MH,Bai, ZD,&An, HZ.(1999).Multi-step prediction for nonlinear autoregressive models based on empirical distributions.STATISTICA SINICA,9(2),559-570. |
MLA | Guo, MH,et al."Multi-step prediction for nonlinear autoregressive models based on empirical distributions".STATISTICA SINICA 9.2(1999):559-570. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Guo, MH]的文章 |
[Bai, ZD]的文章 |
[An, HZ]的文章 |
百度学术 |
百度学术中相似的文章 |
[Guo, MH]的文章 |
[Bai, ZD]的文章 |
[An, HZ]的文章 |
必应学术 |
必应学术中相似的文章 |
[Guo, MH]的文章 |
[Bai, ZD]的文章 |
[An, HZ]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论