CSpace
A new regularized linear discriminant analysis method to solve small sample size problems
Chen, WS; Yuen, PC; Huang, R
2005-11-01
发表期刊INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE
ISSN0218-0014
卷号19期号:7页码:917-935
摘要This paper presents a new regularization technique to deal with the small sample size (S3) problem in linear discriminant analysis (LDA) based face recognition. Regularization on the within-class scatter matrix S-w has been shown to be a good direction for solving the S3 problem because the solution is found in full space instead of a subspace. The main limitation in regularization is that a very high computation is required to determine the optimal parameters. In view of this limitation, this paper re-defines the three-parameter regularization on the within-class scatter matrix S-omega(alpha beta gamma), which is suitable for parameter reduction. Based on the new definition of S-omega(alpha beta gamma), we derive a single parameter (t) explicit expression formula for determining the three parameters and develop a one-parameter regularization on the within-class scatter matrix. A simple and efficient method is developed to determine the value of t. It is also proven that the new regularized within-class scatter matrix S-omega(alpha beta gamma) approaches the original within-class scatter matrix S, as the single parameter tends to zero. A novel one-parameter regularization linear discriminant analysis (1PRLDA) algorithm is then developed. The proposed 1PRLDA method for face recognition has been evaluated with two public available databases, namely ORL and FERET databases. The average recognition accuracies of 50 runs for ORL and FERET databases are 96.65% and 94.00%, respectively. Comparing with existing LDA-based methods in solving the S3 problem, the proposed 1PRLDA method gives the best performance.
关键词linear discriminant analysis small sample size problem face recognition
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000233686300005
出版者WORLD SCIENTIFIC PUBL CO PTE LTD
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/1402
专题中国科学院数学与系统科学研究院
通讯作者Chen, WS
作者单位1.Shenzhen Univ, Coll Sci, Shenzhen 518060, Peoples R China
2.Chinese Acad Sci, Key Lab Math Mechanizat, Beijing 100080, Peoples R China
3.Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
4.Zhongshan Sun Yat Sen Univ, Dept Comp Sci, Guangzhou, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Chen, WS,Yuen, PC,Huang, R. A new regularized linear discriminant analysis method to solve small sample size problems[J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE,2005,19(7):917-935.
APA Chen, WS,Yuen, PC,&Huang, R.(2005).A new regularized linear discriminant analysis method to solve small sample size problems.INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE,19(7),917-935.
MLA Chen, WS,et al."A new regularized linear discriminant analysis method to solve small sample size problems".INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE 19.7(2005):917-935.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, WS]的文章
[Yuen, PC]的文章
[Huang, R]的文章
百度学术
百度学术中相似的文章
[Chen, WS]的文章
[Yuen, PC]的文章
[Huang, R]的文章
必应学术
必应学术中相似的文章
[Chen, WS]的文章
[Yuen, PC]的文章
[Huang, R]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。