KMS Of Academy of mathematics and systems sciences, CAS
| The global dynamics of a class of vector fields in a"e(3) | |
| Zhang, Xin An1; Liang, Zhao Jun1; Chen, Lan Sun2 | |
| 2011-12-01 | |
| 发表期刊 | ACTA MATHEMATICA SINICA-ENGLISH SERIES
![]() |
| ISSN | 1439-8516 |
| 卷号 | 27期号:12页码:2469-2480 |
| 摘要 | In this paper, we find a bridge connecting a class of vector fields in a"e(3) with the planar vector fields and give a criterion of the existence of closed orbits, heteroclinic orbits and homoclinic orbits of a class of vector fields in a"e(3). All the possible nonwandering sets of this class of vector fields fall into three classes: (i) singularities; (ii) closed orbits; (iii) graphs of unions of singularities and the trajectories connecting them. The necessary and sufficient conditions for the boundedness of the vector fields are also obtained. |
| 关键词 | Tangent vector field invariant cone heteroclinic orbit vector field |
| DOI | 10.1007/s10114-011-9053-7 |
| 语种 | 英语 |
| 资助项目 | National Natural Science Foundation of China[10771081] |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics, Applied ; Mathematics |
| WOS记录号 | WOS:000297117900015 |
| 出版者 | SPRINGER HEIDELBERG |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/12395 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Zhang, Xin An |
| 作者单位 | 1.Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China 2.Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
| 推荐引用方式 GB/T 7714 | Zhang, Xin An,Liang, Zhao Jun,Chen, Lan Sun. The global dynamics of a class of vector fields in a"e(3)[J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES,2011,27(12):2469-2480. |
| APA | Zhang, Xin An,Liang, Zhao Jun,&Chen, Lan Sun.(2011).The global dynamics of a class of vector fields in a"e(3).ACTA MATHEMATICA SINICA-ENGLISH SERIES,27(12),2469-2480. |
| MLA | Zhang, Xin An,et al."The global dynamics of a class of vector fields in a"e(3)".ACTA MATHEMATICA SINICA-ENGLISH SERIES 27.12(2011):2469-2480. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论