CSpace  > 数学所
A Cubic E-6-Generalization of the Classical Theorem on Harmonic Polynomials
Xu, Xiaoping
2011
发表期刊JOURNAL OF LIE THEORY
ISSN0949-5932
卷号21期号:1页码:145-164
摘要Classical harmonic analysis says that the spaces of homogeneous harmonic polynomials (solutions of Laplace equation) are irreducible modules of the corresponding orthogonal Lie group (algebra) and the whole polynomial algebra is a free module over the invariant polynomials generated by harmonic polynomials. Dickson invariant trilinear form is the unique fundamental invariant in the polynomial algebra over the basic irreducible module of E-6. In this paper, we prove that the space of homogeneous polynomial solutions with degree in for the dual cubic Dickson invariant differential operator is exactly a direct sum of [m/2] + 1 explicitly determined irreducible E-6-submodules and the whole polynomial algebra is a free module over the polynomial algebra in the Dickson invariant generated by these solutions. Thus we obtain a cubic E-6-generalization of the above classical theorem on harmonic polynomials.
关键词Harmonic polynomial E-6 Lie algebra irreducible module Dickson invariant invariant differential operator solution space
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000288050000007
出版者HELDERMANN VERLAG
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/12109
专题数学所
通讯作者Xu, Xiaoping
作者单位Chinese Acad Sci, Hua Loo Keng Key Math Lab, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Xu, Xiaoping. A Cubic E-6-Generalization of the Classical Theorem on Harmonic Polynomials[J]. JOURNAL OF LIE THEORY,2011,21(1):145-164.
APA Xu, Xiaoping.(2011).A Cubic E-6-Generalization of the Classical Theorem on Harmonic Polynomials.JOURNAL OF LIE THEORY,21(1),145-164.
MLA Xu, Xiaoping."A Cubic E-6-Generalization of the Classical Theorem on Harmonic Polynomials".JOURNAL OF LIE THEORY 21.1(2011):145-164.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Xiaoping]的文章
百度学术
百度学术中相似的文章
[Xu, Xiaoping]的文章
必应学术
必应学术中相似的文章
[Xu, Xiaoping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。