CSpace
Shortest path and maximum flow problems in networks with additive losses and gains
Brandenburg, Franz J.1; Cai, Mao-cheng2
2011-02-04
发表期刊THEORETICAL COMPUTER SCIENCE
ISSN0304-3975
卷号412期号:4-5页码:391-401
摘要We introduce networks with additive losses and gains on the arcs. If a positive flow of x units enters an arc a, then x + g(a) units exit. Arcs may increase or consume flow, i.e., they are gainy or lossy. Such networks have various applications, e.g., in financial analysis, transportation, and data communication. Problems in such networks are generally intractable. In particular, the shortest path problem is NP-hard. However, there is a pseudo-polynomial time algorithm for the problem with nonnegative costs and gains. The maximum flow problem is strongly NP-hard, even in networks with integral capacities and with unit gain or with loss two on the arcs, and is hard to approximate. However, it is solvable in polynomial time in unit-loss networks using the Edmonds-Karp algorithm. Our NP-hardness results contrast efficient polynomial time solutions of path and flow problems in standard and in so-called generalized networks with multiplicative losses and gains. (c) 2010 Elsevier B.V. All rights reserved.
关键词Extended networks Lossy and gainy arcs Max-flow problems Shortest path problems NP-hard problems Unit-loss networks
DOI10.1016/j.tcs.2010.11.019
语种英语
资助项目Natural Science Foundation of China[10171054]
WOS研究方向Computer Science
WOS类目Computer Science, Theory & Methods
WOS记录号WOS:000286862100012
出版者ELSEVIER SCIENCE BV
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/11257
专题中国科学院数学与系统科学研究院
通讯作者Brandenburg, Franz J.
作者单位1.Univ Passau, D-94030 Passau, Germany
2.Chinese Acad Sci, Inst Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Brandenburg, Franz J.,Cai, Mao-cheng. Shortest path and maximum flow problems in networks with additive losses and gains[J]. THEORETICAL COMPUTER SCIENCE,2011,412(4-5):391-401.
APA Brandenburg, Franz J.,&Cai, Mao-cheng.(2011).Shortest path and maximum flow problems in networks with additive losses and gains.THEORETICAL COMPUTER SCIENCE,412(4-5),391-401.
MLA Brandenburg, Franz J.,et al."Shortest path and maximum flow problems in networks with additive losses and gains".THEORETICAL COMPUTER SCIENCE 412.4-5(2011):391-401.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Brandenburg, Franz J.]的文章
[Cai, Mao-cheng]的文章
百度学术
百度学术中相似的文章
[Brandenburg, Franz J.]的文章
[Cai, Mao-cheng]的文章
必应学术
必应学术中相似的文章
[Brandenburg, Franz J.]的文章
[Cai, Mao-cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。