CSpace  > 计算数学与科学工程计算研究所
Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems
Chen, Huangxin1; Xu, Xuejun1; Hoppe, Ronald H. W.2,3
2010-09-01
Source PublicationNUMERISCHE MATHEMATIK
ISSN0029-599X
Volume116Issue:3Pages:383-419
AbstractRecently an adaptive nonconforming finite element method (ANFEM) has been developed by Carstensen and Hoppe (in Numer Math 103:251-266, 2006). In this paper, we extend the result to some nonsymmetric and indefinite problems. The main tools in our analysis are a posteriori error estimators and a quasi-orthogonality property. In this case, we need to overcome two main difficulties: one stems from the nonconformity of the finite element space, the other is how to handle the effect of a nonsymmetric and indefinite bilinear form. An appropriate adaptive nonconforming finite element method featuring a marking strategy based on the comparison of the a posteriori error estimator and a volume term is proposed for the lowest order Crouzeix-Raviart element. It is shown that the ANFEM is a contraction for the sum of the energy error and a scaled volume term between two consecutive adaptive loops. Moreover, quasi-optimality in the sense of quasi-optimal algorithmic complexity can be shown for the ANFEM. The results of numerical experiments confirm the theoretical findings.
DOI10.1007/s00211-010-0307-6
Language英语
Funding ProjectNSF[DMS-0511624] ; NSF[DMS-0707602] ; NSF[DMS-0810176] ; NSF[DMS-0811153] ; NSF[DMS-0914788] ; National Science Foundation (NSF) of China[10731060] ; Special funds for major state basic research projects (973)[2005CB321701]
WOS Research AreaMathematics
WOS SubjectMathematics, Applied
WOS IDWOS:000281397600002
PublisherSPRINGER
Citation statistics
Document Type期刊论文
Identifierhttp://ir.amss.ac.cn/handle/2S8OKBNM/10716
Collection计算数学与科学工程计算研究所
Corresponding AuthorChen, Huangxin
Affiliation1.Chinese Acad Sci, LSEC, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
3.Univ Houston, Dept Math, Houston, TX 77204 USA
Recommended Citation
GB/T 7714
Chen, Huangxin,Xu, Xuejun,Hoppe, Ronald H. W.. Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems[J]. NUMERISCHE MATHEMATIK,2010,116(3):383-419.
APA Chen, Huangxin,Xu, Xuejun,&Hoppe, Ronald H. W..(2010).Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems.NUMERISCHE MATHEMATIK,116(3),383-419.
MLA Chen, Huangxin,et al."Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems".NUMERISCHE MATHEMATIK 116.3(2010):383-419.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Chen, Huangxin]'s Articles
[Xu, Xuejun]'s Articles
[Hoppe, Ronald H. W.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Chen, Huangxin]'s Articles
[Xu, Xuejun]'s Articles
[Hoppe, Ronald H. W.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Chen, Huangxin]'s Articles
[Xu, Xuejun]'s Articles
[Hoppe, Ronald H. W.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.