CSpace

Browse/Search Results:  1-10 of 10 Help

Selected(0)Clear Items/Page:    Sort:
RUNGE-KUTTA SEMIDISCRETIZATIONS FOR STOCHASTIC MAXWELL EQUATIONS WITH ADDITIVE NOISE 期刊论文
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 卷号: 57, 期号: 2, 页码: 702-727
Authors:  Chen, Chuchu;  Hong, Jialin;  Ji, Lihai
Favorite  |  View/Download:12/0  |  Submit date:2020/01/10
stochastic Maxwell equations  stochastic Runge-Kutta semidiscretization  stochastic symplecticity  mean-square convergence order  
MEAN-SQUARE CONVERGENCE OF A SEMIDISCRETE SCHEME FOR STOCHASTIC MAXWELL EQUATIONS 期刊论文
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 卷号: 57, 期号: 2, 页码: 728-750
Authors:  Chen, Chuchu;  Hong, Jialin;  Ji, Lihai
Favorite  |  View/Download:13/0  |  Submit date:2020/01/10
mean-square convergence order  semidiscrete scheme  stochastic Maxwell equations  regularity  
Optimal error estimate of conservative local discontinuous Galerkin method for nonlinear Schrodinger equation 期刊论文
APPLIED NUMERICAL MATHEMATICS, 2018, 卷号: 127, 页码: 164-178
Authors:  Hong, Jialin;  Ji, Lihai;  Liu, Zhihui
Favorite  |  View/Download:14/0  |  Submit date:2018/07/30
Nonlinear Schrodinger equation  Optimal error estimates  Charge conservation law  Local discontinuous Galerkin method  Generalized alternating numerical flux  
Optimal error estimate of conservative local discontinuous Galerkin method for nonlinear Schrodinger equation 期刊论文
APPLIED NUMERICAL MATHEMATICS, 2018, 卷号: 127, 页码: 164
Authors:  Hong, Jialin;  Ji, Lihai;  Liu, Zhihui
Favorite  |  View/Download:8/0  |  Submit date:2019/12/31
An energy-conserving method for stochastic Maxwell equations with multiplicative noise 期刊论文
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 卷号: 351, 页码: 216-229
Authors:  Hong, Jialin;  Ji, Lihai;  Zhang, Liying;  Cai, Jiaxiang
Favorite  |  View/Download:10/0  |  Submit date:2018/07/30
Energy-conserving method  Three-dimensional stochastic Maxwell equations  Multiplicative noise  Geometric structure  
Optimal error estimate of a compact scheme for nonlinear Schrodinger equation 期刊论文
APPLIED NUMERICAL MATHEMATICS, 2017, 卷号: 120, 页码: 68-81
Authors:  Hong, Jialin;  Ji, Lihai;  Kong, Linghua;  Wang, Tingchun
Favorite  |  View/Download:4/0  |  Submit date:2018/07/30
Nonlinear Schrodinger equation  Compact scheme  Symplectic scheme  Energy conservation  Optimal error estimate  
Mean-square convergence of a symplectic local discontinuous Galerkin method applied to stochastic linear Schrodinger equation 期刊论文
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 卷号: 37, 期号: 2, 页码: 1041-1065
Authors:  Chen, Chuchu;  Hong, Jialin;  Ji, Lihai
Favorite  |  View/Download:5/0  |  Submit date:2018/07/30
symplectic method  local discontinuous Galerkin method  stochastic linear Schrodinger equation  L-2-stability  charge conservation law  mean-square convergence  
A Compact Scheme for Coupled Stochastic Nonlinear Schrodinger Equations 期刊论文
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 卷号: 21, 期号: 1, 页码: 93-125
Authors:  Chen, Chuchu;  Hong, Jialin;  Ji, Lihai;  Kong, Linghua
Favorite  |  View/Download:8/0  |  Submit date:2018/07/30
Coupled stochastic nonlinear Schrodinger equations  compact scheme  stochastic multi-symplectic conservation law  energy evolution law  charge conservation law  soliton evolution  soliton interaction  
Energy evolution of multi-symplectic methods for Maxwell equations with perfectly matched layer boundary 期刊论文
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 卷号: 439, 期号: 1, 页码: 256-270
Authors:  Hong, Jialin;  Ji, Lihai
Favorite  |  View/Download:4/0  |  Submit date:2018/07/30
Energy evolution  Maxwell equations  Perfectly matched layer  Multi-symplectic Yee method  Multi-symplectic Runge-Kutta methods  
Compact and Efficient Conservative Schemes for Coupled Nonlinear Schrodinger Equations 期刊论文
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 卷号: 31, 期号: 6, 页码: 1814-1843
Authors:  Kong, Linghua;  Hong, Jialin;  Ji, Lihai;  Zhu, Pengfei
Favorite  |  View/Download:6/0  |  Submit date:2018/07/30
conservation law  computational efficiency  coupled nonlinear Schrodinger equation  highorder compact method