CSpace

Browse/Search Results:  1-10 of 12 Help

Selected(0)Clear Items/Page:    Sort:
Some remarks about the possible blow-up for the Navier-Stokes equations 期刊论文
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 页码: 19
Authors:  Chemin, Jean-Yves;  Gallagher, Isabelle;  Zhang, Ping
Favorite  |  View/Download:0/0  |  Submit date:2020/01/10
Anisotropic Littlewood-Paley Theory  blow-up criteria  incompressible Navier-Stokes equations  
On local strong solutions to the three-dimensional nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum 期刊论文
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 卷号: 46, 页码: 58-81
Authors:  Lu, Boqiang;  Song, Sisi
Favorite  |  View/Download:3/0  |  Submit date:2019/03/05
Incompressible Navier-Stokes equations  Density-dependent viscosity  Vacuum  Strong solutions  
INHOMOGENEOUS INCOMPRESSIBLE VISCOUS FLOWS WITH SLOWLY VARYING INITIAL DATA 期刊论文
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2018, 卷号: 17, 期号: 5, 页码: 1121-1172
Authors:  Chemin, Jean-Yves;  Zhang, Ping
Favorite  |  View/Download:11/0  |  Submit date:2018/11/16
inhomogeneous incompressible Navier-Stokes equations  slow variable  decay estimate  anisotropic Littlewood-Paley theory  
An Artificial Compressibility Method for 3D Phase-Field Model and its Application to Two-Phase Flows 期刊论文
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2017, 卷号: 14, 期号: 5, 页码: 14
Authors:  Shah, Abdullah;  Saeed, Sadia;  Yuan, L.
Favorite  |  View/Download:4/0  |  Submit date:2018/07/30
Two-phase flow  phase-field model  incompressible Navier-Stokes equations  artificial compressibility method  Boussinesq approximation  
Numerical solution of a phase field model for incompressible two-phase flows based on artificial compressibility 期刊论文
COMPUTERS & FLUIDS, 2011, 卷号: 42, 期号: 1, 页码: 54-61
Authors:  Shah, Abdullah;  Yuan, Li
Favorite  |  View/Download:4/0  |  Submit date:2018/07/30
Two-phase flow  Phase field model  Incompressible Navier-Stokes equations  Artificial compressibility  WENO scheme  
Modified alternating direction-implicit iteration method for linear systems from the incompressible Navier-Stokes equations 期刊论文
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 卷号: 88, 期号: 17, 页码: 3762-3779
Authors:  Ran, Yu-Hong;  Yuan, Li
Favorite  |  View/Download:3/0  |  Submit date:2018/07/30
incompressible Navier-Stokes equations  modified ADI iteration method  diagonally dominant  optimal parameter  convergence  
A Third-Order Upwind Compact Scheme on Curvilinear Meshes for the Incompressible Navier-Stokes Equations 期刊论文
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 卷号: 5, 期号: 2-4, 页码: 712-729
Authors:  Shah, Abdullah;  Guo, Hong;  Yuan, Li
Favorite  |  View/Download:5/0  |  Submit date:2018/07/30
Upwind compact difference  flux difference splitting  incompressible Navier-Stokes equations  artificial compressibility  lid-driven cavity flow  
The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data 期刊论文
CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 卷号: 30, 期号: 1, 页码: 17-26
Authors:  Hsiao, Ling;  Ju, Qiangchang;  Li, Fucai
Favorite  |  View/Download:3/0  |  Submit date:2018/07/30
Compressible Navier-Stokes equations  Incompressible Navier-Stokes equations  Low Mach number limit  Modulated energy functional  Strichartz's estimate  
On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations 期刊论文
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 卷号: 39, 期号: 6, 页码: 1251-1269
Authors:  Xu, XJ;  Chow, CO;  Lui, SH
Favorite  |  View/Download:3/0  |  Submit date:2018/07/30
nonoverlapping domain decomposition  incompressible Navier-Stokes equations  finite elements  nonlinear problems  
Comparison of implicit multigrid schemes for three-dimensional incompressible flows 期刊论文
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 卷号: 177, 期号: 1, 页码: 134-155
Authors:  Yuan, L
Favorite  |  View/Download:4/0  |  Submit date:2018/07/30
multigrid  implicit scheme  artificial compressibility  incompressible Navier-Stokes equations  prolate spheroid