CSpace

Browse/Search Results:  1-10 of 54 Help

Selected(0)Clear Items/Page:    Sort:
Multi-channel quantum parameter estimation 期刊论文
SCIENCE CHINA-INFORMATION SCIENCES, 2022, 卷号: 65, 期号: 10, 页码: 13
Authors:  Bao, Liying;  Qi, Bo;  Wang, Yabo;  Dong, Daoyi;  Wu, Rebing
Favorite  |  View/Download:6/0  |  Submit date:2023/02/07
quantum metrology  quantum parameter estimation  multi-channel  quantum Fisher information  
Higher-dimensional soliton generation, stability and excitations of the PT-symmetric nonlinear Schrodinger equations 期刊论文
PHYSICA D-NONLINEAR PHENOMENA, 2022, 卷号: 430, 页码: 14
Authors:  Chen, Yong;  Yan, Zhenya;  Malomed, Boris A.
Favorite  |  View/Download:67/0  |  Submit date:2022/04/29
Higher-dimensional nonlinear Schrodinger equation  PT -symmetric potentials  Stable solitons  Adiabatic management  
Strong and weak interactions of rational vector rogue waves and solitons to any n-component nonlinear Schrodinger system with higher-order effects 期刊论文
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 卷号: 478, 期号: 2257, 页码: 23
Authors:  Weng, Weifang;  Zhang, Guoqiang;  Yan, Zhenya
Favorite  |  View/Download:59/0  |  Submit date:2022/04/02
rational vector rogue waves  rational vector solitons  weak and strong interactions  n-component nonlinear wave system with higher-order effects  modified Darboux transform  
Data-driven peakon and periodic peakon solutions and parameter discovery of some nonlinear dispersive equations via deep learning 期刊论文
PHYSICA D-NONLINEAR PHENOMENA, 2021, 卷号: 428, 页码: 15
Authors:  Wang, Li;  Yan, Zhenya
Favorite  |  View/Download:57/0  |  Submit date:2022/04/02
Nonlinear dispersive equation  Initial-boundary value conditions  Physics-informed neural networks  Deep learning  Data-driven peakon and periodic peakon  solutions Data-driven parameter discovery  
Multi-component Nonlinear Schrodinger Equations with Nonzero Boundary Conditions: Higher-Order Vector Peregrine Solitons and Asymptotic Estimates 期刊论文
JOURNAL OF NONLINEAR SCIENCE, 2021, 卷号: 31, 期号: 5, 页码: 52
Authors:  Zhang, Guoqiang;  Ling, Liming;  Yan, Zhenya
Favorite  |  View/Download:94/0  |  Submit date:2021/10/26
Multi-component NLS equations  Nonzero boundary conditions  Lax pair  Loop group method  Darboux transform  Higher-order vector Peregrine solitons  Parity-time-reversal symmetry  Governing polynomial  Asymptotic estimates  
Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrodinger equation with a potential using the PINN deep learning 期刊论文
PHYSICS LETTERS A, 2021, 卷号: 404, 页码: 7
Authors:  Wang, Li;  Yan, Zhenya
Favorite  |  View/Download:76/0  |  Submit date:2021/10/26
Defocusing NLS equation with the  time-dependent potential  Initial-boundary value conditions  Physics-informed neural networks  Deep learning  Data-driven rogue waves and parameter discovery  
Optimal rate of convergence for two classes of schemes to stochastic differential equations driven by fractional Brownian motions 期刊论文
IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 卷号: 41, 期号: 2, 页码: 1608-1638
Authors:  Hong, Jialin;  Huang, Chuying;  Wang, Xu
Favorite  |  View/Download:76/0  |  Submit date:2021/10/26
fractional Brownian motion  strong convergence rate  Runge-Kutta method  simplified step-N Euler scheme  
Central discontinuous Galerkin methods on overlapping meshes for wave equations 期刊论文
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 卷号: 55, 期号: 1, 页码: 329-356
Authors:  Liu, Yong;  Lu, Jianfang;  Shu, Chi-Wang;  Zhang, Mengping
Favorite  |  View/Download:69/0  |  Submit date:2021/04/26
Optimal error estimates  central DG method  second order wave equation  dispersion analysis  
An Adaptive Surrogate Modeling Based on Deep Neural Networks for Large-Scale Bayesian Inverse Problems 期刊论文
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 卷号: 28, 期号: 5, 页码: 2180-2205
Authors:  Yan, Liang;  Zhou, Tao
Favorite  |  View/Download:76/0  |  Submit date:2021/01/14
Bayesian inverse problems  deep neural networks  multi-fidelity surrogate modeling  Markov chain Monte Carlo  
Energy and quadratic invariants preserving (EQUIP) multi-symplectic methods for Hamiltonian wave equations 期刊论文
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 卷号: 418, 页码: 18
Authors:  Chen, Chuchu;  Hong, Jialin;  Sim, Chol;  Sonwu, Kwang
Favorite  |  View/Download:96/0  |  Submit date:2020/10/12
Hamiltonian wave equations  Energy preservation  EQUIP multi-symplectic methods