CSpace

Browse/Search Results:  1-4 of 4 Help

Selected(0)Clear Items/Page:    Sort:
STRUCTURED QUASI-NEWTON METHODS FOR OPTIMIZATION WITH ORTHOGONALITY CONSTRAINTS 期刊论文
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 卷号: 41, 期号: 4, 页码: A2239-A2269
Authors:  Hu, Jiang;  Jiang, Bo;  Lin, Lin;  Wen, Zaiwen;  Yuan, Ya-Xiang
Favorite  |  View/Download:10/0  |  Submit date:2020/01/10
optimization with orthogonality constraints  structured quasi-Newton method  limited-memory Nystrom approximation  Hartree-Fock total energy minimization  
A SEMISMOOTH NEWTON METHOD FOR SEMIDEFINITE PROGRAMS AND ITS APPLICATIONS IN ELECTRONIC STRUCTURE CALCULATIONS 期刊论文
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 卷号: 40, 期号: 6, 页码: A4131-A4157
Authors:  Li, Yongfeng;  Wen, Zaiwen;  Yang, Chao;  Yuan, Ya-Xiang
Favorite  |  View/Download:7/0  |  Submit date:2019/03/05
semidefinite programming  ADMM  semismooth Newton method  electronic structure calculation  two-body reduced density matrix  
Recent developments in the ABINIT software package 期刊论文
COMPUTER PHYSICS COMMUNICATIONS, 2016, 卷号: 205, 页码: 106-131
Authors:  Gonze, X.;  Jollet, F.;  Araujo, F. Abreu;  Adams, D.;  Amadon, B.;  Applencourt, T.;  Audouze, C.;  Beuken, J. -M.;  Bieder, J.;  Bokhanchuk, A.;  Bousquet, E.;  Bruneval, F.;  Caliste, D.;  Cote, M.;  Dahm, F.;  Da Pieve, F.;  Delaveau, M.;  Di Gennaro, M.;  Dorado, B.;  Espejo, C.;  Geneste, G.;  Genovese, L.;  Gerossier, A.;  Giantomassi, M.;  Gillet, Y.;  Hamann, D. R.;  He, L.;  Jomard, G.;  Janssen, J. Laflamme;  Le Roux, S.;  Levitt, A.;  Lherbier, A.;  Liu, F.;  Lukacevic, I.;  Martin, A.;  Martins, C.;  Oliveira, M. J. T.;  Ponce, S.;  Pouillon, Y.;  Rangel, T.;  Rignanese, G. -M.;  Romero, A. H.;  Rousseau, B.;  Rubel, O.;  Shukri, A. A.;  Stankovski, M.;  Torrent, M.;  Van Setten, M. J.;  Van Troeye, B.;  Verstraete, M. J.;  Waroquiers, D.;  Wiktor, J.;  Xu, B.;  Zhou, A.;  Zwanziger, J. W.
Favorite  |  View/Download:7/0  |  Submit date:2018/07/30
First-principles calculation  Electronic structure  Density Functional Theory  Many-Body Perturbation Theory  
A local Quantum-Atomistic-Continuum model for mechanical behaviors at micro-nano scale 期刊论文
COMPUTATIONAL MATERIALS SCIENCE, 2015, 卷号: 109, 页码: 312-322
Authors:  Han, Tiansi;  Cui, Junzhi;  Yu, Xingang;  Yang, Yantao
Favorite  |  View/Download:9/0  |  Submit date:2018/07/30
Atomistic-to-continuum model  Density functional theory  Quantum strain energy density  Basic deformation element  Constitutive relation