CSpace

Browse/Search Results:  1-10 of 395 Help

Selected(0)Clear Items/Page:    Sort:
An adaptive group LASSO approach for domain selection in functional generalized linear models 期刊论文
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 卷号: 219, 页码: 13-32
Authors:  Sun, Yifan;  Wang, Qihua
Favorite  |  View/Download:6/0  |  Submit date:2022/06/21
Functional data  Adaptive LASSO  Group LASSO  Null region detection  B-spline  
Two-sample functional linear models with functional responses 期刊论文
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 卷号: 218, 页码: 85-105
Authors:  Xu, Wenchao;  Lin, Hongmei;  Zhang, Riquan;  Liang, Hua
Favorite  |  View/Download:16/0  |  Submit date:2022/04/02
Asymptotic normality  Functional linear regression  Functional response  Functional principal component analysis  Rate of convergence  Semiparametric comparison  
A Nitsche Hybrid Multiscale Method with Non-matching Grids 期刊论文
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 卷号: 91, 期号: 2, 页码: 28
Authors:  Ming, Pingbing;  Song, Siqi
Favorite  |  View/Download:18/0  |  Submit date:2022/04/29
Multiscale PDE  Hybrid method  Nitsche variational formulation  Non-matching grid  
Accelerated exponential Euler scheme for stochastic heat equation: convergence rate of the density 期刊论文
IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 页码: 40
Authors:  Chen, Chuchu;  Cui, Jianbo;  Hong, Jialin;  Sheng, Derui
Favorite  |  View/Download:5/0  |  Submit date:2022/06/21
density  convergence order  accelerated exponential Euler scheme  stochastic heat equation  Malliavin calculus  
Optimal convergence of finite element approximation to an optimization problem with PDE constraint* 期刊论文
INVERSE PROBLEMS, 2022, 卷号: 38, 期号: 4, 页码: 45
Authors:  Gong, Wei;  Tan, Zhiyu;  Zhou, Zhaojie
Favorite  |  View/Download:17/0  |  Submit date:2022/04/29
inverse source problem  optimal control  finite element method  a priori error estimate  a posteriori error estimate  adaptivity  rate optimality  
Optimal convergence of finite element approximation to an optimization problem with PDE constraint* * Wei Gong was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB 41000000), the National Key Basic Research Program (Grant No. 2018YFB0704304) and the National Natural Science Foundation of China (Grant No. 12071468, 11671391). Zhaojie Zhou was supported by the National Natural Science Foundation of China under Grant No. 11971276. 期刊论文
Inverse Problems, 2022, 卷号: 38, 期号: 4
Authors:  Gong,Wei;  Tan,Zhiyu;  Zhou,Zhaojie
Favorite  |  View/Download:20/0  |  Submit date:2022/04/29
inverse source problem  optimal control  finite element method  a priori error estimate  a posteriori error estimate  adaptivity  rate optimality  
A lowest-degree quasi-conforming finite element de Rham complex on general quadrilateral grids by piecewise polynomials 期刊论文
CALCOLO, 2022, 卷号: 59, 期号: 1, 页码: 32
Authors:  Quan, Qimeng;  Ji, Xia;  Zhang, Shuo
Favorite  |  View/Download:18/0  |  Submit date:2022/04/02
Nonconforming finite element  De Rham complex  General quadrilateral grids  Piecewise polynomial  
A TWO-LEVEL PRECONDITIONED HELMHOLTZ-JACOBI-DAVIDSON METHOD FOR THE MAXWELL EIGENVALUE PROBLEM 期刊论文
MATHEMATICS OF COMPUTATION, 2022, 卷号: 91, 期号: 334, 页码: 623-657
Authors:  Liang, Qigang;  Xu, Xuejun
Favorite  |  View/Download:14/0  |  Submit date:2022/04/29
Maxwell eigenvalue problem  edge element  Helmholtz projection  Jacobi-Davidson method  domain decomposition  
LARGE N LIMIT OF THE O(N) LINEAR SIGMA MODEL VIA STOCHASTIC QUANTIZATION 期刊论文
ANNALS OF PROBABILITY, 2022, 卷号: 50, 期号: 1, 页码: 131-202
Authors:  Shen, Hao;  Smith, Scott A.;  Zhu, Rongchan;  Zhu, Xiangchan
Favorite  |  View/Download:18/0  |  Submit date:2022/04/29
O(N) linear sigma model  Phi(4)  mean-field limit  stochastic quantization  space-time white noise  
Learning with smooth Hinge losses 期刊论文
NEUROCOMPUTING, 2021, 卷号: 463, 页码: 379-387
Authors:  Luo, JunRu;  Qiao, Hong;  Zhang, Bo
Favorite  |  View/Download:13/0  |  Submit date:2022/04/02
Smooth Hinge loss  Convex surrogate loss  Support vector machine  Trust region Newton method