CSpace

Browse/Search Results:  1-10 of 15 Help

Selected(0)Clear Items/Page:    Sort:
Large Deviations Principles for Symplectic Discretizations of Stochastic Linear Schrodinger Equation 期刊论文
POTENTIAL ANALYSIS, 2022, 页码: 41
Authors:  Chen, Chuchu;  Hong, Jialin;  Jin, Diancong;  Sun, Liying
Favorite  |  View/Download:17/0  |  Submit date:2022/04/29
Large deviations principle  Symplectic discretizations  Stochastic Schrodinger equation  Rate function  Exponential tightness  
Layer-Splitting Methods for Time-Dependent Schrodinger Equations of Incommensurate Systems 期刊论文
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 卷号: 30, 期号: 5, 页码: 1474-1498
Authors:  Wang, Ting;  Chen, Huajie;  Zhou, Aihui;  Zhou, Yuzhi
Favorite  |  View/Download:9/0  |  Submit date:2022/04/02
Incommensurate system  time-dependent Schrodinger equation  time stepping scheme  
A WONG-ZAKAI THEOREM FOR THE STOCHASTIC MASS-CRITICAL NONLINEAR SCHRODINGER EQUATION 期刊论文
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 卷号: 53, 期号: 3, 页码: 3681-3715
Authors:  Fan, Chenjie;  Xu, Weijun
Favorite  |  View/Download:21/0  |  Submit date:2021/10/26
Wong-Zakai  mass-critical  stochastic NLS  
ON GLOBAL EXISTENCE AND BLOW-UP FOR DAMPED STOCHASTIC NONLINEAR SCHRODINGER EQUATION 期刊论文
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 卷号: 24, 期号: 12, 页码: 6837-6854
Authors:  Cui, Jianbo;  Hong, Jialin;  Sun, Liying
Favorite  |  View/Download:91/0  |  Submit date:2020/01/10
Stochastic nonlinear Schrodinger equation  multiplicative noise  global existence  blow-up  exponential integrability  
CONVERGENCE ANALYSIS OF A SYMPLECTIC SEMI-DISCRETIZATION FOR STOCHASTIC NLS EQUATION WITH QUADRATIC POTENTIAL 期刊论文
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 卷号: 24, 期号: 8, 页码: 4295-4315
Authors:  Hong, Jialin;  Miao, Lijun;  Zhang, Liying
Favorite  |  View/Download:51/0  |  Submit date:2020/01/10
Stochastic nonlinear Schrodinger equation  quadratic potential  additive noise  stochastic symplectic scheme  convergence analysis  
Strong convergence rate of splitting schemes for stochastic nonlinear Schrodinger equations 期刊论文
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 卷号: 266, 期号: 9, 页码: 5625-5663
Authors:  Cui, Jianbo;  Hong, Jialin;  Liu, Zhihui;  Zhou, Weien
Favorite  |  View/Download:55/0  |  Submit date:2019/03/11
Stochastic nonlinear Schrodinger equation  Strong convergence rate  Exponential integrability  Splitting scheme  Non-monotone coefficients  
PARAREAL EXPONENTIAL theta-SCHEME FOR LONGTIME SIMULATION OF STOCHASTIC SCHRODINGER EQUATIONS WITH WEAK DAMPING 期刊论文
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 卷号: 41, 期号: 6, 页码: B1155-B1177
Authors:  Hong, Jialin;  Wang, Xu;  Zhang, Liying
Favorite  |  View/Download:34/0  |  Submit date:2020/09/23
stochastic Schrodinger equation  parareal algorithm  exponential theta-scheme  invariant measure  
ANALYSIS OF A SPLITTING SCHEME FOR DAMPED STOCHASTIC NONLINEAR SCHRODINGER EQUATION WITH MULTIPLICATIVE NOISE 期刊论文
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 卷号: 56, 期号: 4, 页码: 2045-2069
Authors:  Cui, Jianbo;  Hong, Jialin
Favorite  |  View/Download:50/0  |  Submit date:2018/10/07
damped stochastic nonlinear Schrodinger equation  exponential integrability  strong order  weak order  Kolmogorov equation  
Strong convergence rate of finite difference approximations for stochastic cubic Schrodinger equations 期刊论文
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 卷号: 263, 期号: 7, 页码: 3687-3713
Authors:  Cui, Jianbo;  Hong, Jialin;  Liu, Zhihui
Favorite  |  View/Download:38/0  |  Submit date:2018/07/30
Stochastic cubic Schrodinger equation  Strong convergence rate  Central difference scheme  Exponential integrability  Continuous dependence  
Stochastic symplectic and multi-symplectic methods for nonlinear Schrodinger equation with white noise dispersion 期刊论文
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 卷号: 342, 页码: 267-285
Authors:  Cui, Jianbo;  Hong, Jialin;  Liu, Zhihui;  Zhou, Weien
Favorite  |  View/Download:31/0  |  Submit date:2018/07/30
Nonlinear Schrodinger equation  White noise dispersion  Stochastic symplectic and multi-symplectic structures  Stochastic symplectic and multi-symplectic schemes