CSpace
Lower bounds for the eigenvalues of the Dirac operator: Part I. The hypersurface Dirac operator
Hijazi, O; Zhang, X
2001
Source PublicationANNALS OF GLOBAL ANALYSIS AND GEOMETRY
ISSN0232-704X
Volume19Issue:4Pages:355-376
AbstractWe give optimal lower bounds for the hypersurface Dirac operator in terms of the Yamabe number, the energy-momentum tensor and the mean curvature. In the limiting case, we prove that the hypersurface is an Einstein manifold with constant mean curvature.
Keywordconformal geometry Dirac operator hypersurfaces spectrum
Language英语
WOS Research AreaMathematics
WOS SubjectMathematics
WOS IDWOS:000169207500004
PublisherKLUWER ACADEMIC PUBL
Citation statistics
Cited Times:17[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.amss.ac.cn/handle/2S8OKBNM/16810
Collection中国科学院数学与系统科学研究院
Affiliation1.Univ Henri Poincare, Inst Elie Cartan, F-54506 Vandoeuvre Nancy, France
2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
Recommended Citation
GB/T 7714
Hijazi, O,Zhang, X. Lower bounds for the eigenvalues of the Dirac operator: Part I. The hypersurface Dirac operator[J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY,2001,19(4):355-376.
APA Hijazi, O,&Zhang, X.(2001).Lower bounds for the eigenvalues of the Dirac operator: Part I. The hypersurface Dirac operator.ANNALS OF GLOBAL ANALYSIS AND GEOMETRY,19(4),355-376.
MLA Hijazi, O,et al."Lower bounds for the eigenvalues of the Dirac operator: Part I. The hypersurface Dirac operator".ANNALS OF GLOBAL ANALYSIS AND GEOMETRY 19.4(2001):355-376.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Hijazi, O]'s Articles
[Zhang, X]'s Articles
Baidu academic
Similar articles in Baidu academic
[Hijazi, O]'s Articles
[Zhang, X]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Hijazi, O]'s Articles
[Zhang, X]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.